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S U M M A R Y  
A complete and exact solution for the problem of an incident P wave scattered by 
an elastic spherical inclusion is presented and described. The solution can be 
obtained from either analytical formulae or stable numerical procedures. A method 
of estimating the number of terms that must be retained in the harmonic series in 
order to achieve a specified accuracy is given. The results are investigated by 
calculating synthetic seismograms, scattering diagrams, and scattering cross-sections 
for a broad frequency band and for both low-velocity and high-velocity inclusions. 
The fields within the shadow zone are formed primarily from three different types of 
waves, P waves transmitted through the sphere, P waves diffracted around the 
sphere, and S waves converted at the boundary of the sphere. The relative 
contribution from these different waves depends upon the distance of the observa- 
tion point from the sphere. 
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1 INTRODUCTION 

The fact that the earth is not a homogeneous body has forced seismologists to consider scattered waves in their attempts to 
explain some of the features they observe on seismograms. Elastic wave scattering has been called upon to explain a variety of 
different phenomena which are routinely observed. These include the phase and amplitude fluctuations of waves arriving at a 
seismic array (Aki 1973), the precursors to PKIKP (Haddon & Cleary 1974), and the codas of local earthquakes (Aki 1969). In 
addition, the attenuation of seismic waves is usually interpreted as being a combination of intrinsic absorption and scattering 
(Aki 1980). 

The general problem of scattering of elastic waves by a heterogeneity within the earth is a difficult one and analytical 
solutions are known for only a few special cases, and even in these instances the solutions are complicated and laborious to 
calculate. Thus, most attempts at interpreting scattered seismic waves have relied upon approximate treatments of the 
scattering theory. A number of approximations are possible and are related to such parameters as the size of the scatterer, the 
shape of the scatterer, the distance of the observation point from the scatterer, the magnitude of the heterogeneity, and the 
number of times the wave has been scattered. Assessing the validity of these approximations is not a simple matter and has 
been addressed for only some of the approximations (for example, Hudson & Heritage 1981). The matter is further 
complicated by the fact that more than one approximation may be involved in the same problem, and it is not always obvious 
that the different approximations are consistent. 

The best method of checking the validity of the approximations which are made in scattering problems is to compare them 
with exact analytical solutions. In this paper we develop and discuss the properties of one such solution, the scattering of a 
plane P wave by a spherical inclusion. The method of obtaining the analytical solution is outlined, the numerical methods used 
in calculating the solution are described, and some of the important features of the solution are described and discussed. The 
results contained in this paper are the starting point for a companion paper (Korneev & Johnson 1993), which makes detailed 
comparisons between various approximations and the exact solution. 

In setting up the theoretical problem for elastic wave scattering, one must choose a model which is complicated enough so 
that it resembles situations found in the earth and at the same time simple enough to allow tractable solutions of the 
mathematical equations. We have chosen to model a local heterogeneity as a homogeneous elastic sphere surrounded by a 
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homogeneous elastic medium. The elastic constants and density of the spherical inclusion can be arbitrarily different from those 
of the surrounding medium. The sphere can also be filled with a fluid. The sphere is one of the few objects for which the 
scattering problem can be solved exactly. It also has the desirable property of being describable by a minimum number of 
parameters, which makes the interpretation of the analytical and numerical results relatively simple. Furthermore, scattering by 
a sphere represents a canonical problem for a more extended class of objects with relatively simple and smooth boundaries, and 
thus the results presented in this paper contribute to the general understanding of scattering from this class of heterogeneities. 

2 THEORY 

The analytical treatment of elastic wave scattering by a spherical inclusion has a long and rich history, dating back to the 
classical papers by Clebsch (1863) and Rayleigh (1871). Much of the earlier work was restricted to scalar (acoustic) waves, 
hollow inclusions, or rigid inclusions. There were also theoretical developments in the scattering of light waves, and a good 
summary of this work and the relevant references can be found in the book by Van der Hulst (1957). Considerable progress has 
been made in the use of asymptotic expansions which are appropriate at high frequencies, with the references in this area 
including Scholte (1956), Nussenzveig (1965,1969), Ludwig (1970), Uberall (1973), and Aki & Richards (1980). Much of the 
more recent work on the scattering of elastic waves by a spherical inclusion has been associated with the names of G. I.  
Petrashen in the USSR and R. Truell in the USA. As early as 1944 Petrashen was studying the scattering problem for an 
incident P wave, where he made use of a natural spherical vector system which he had developed earlier for the purposes of 
quantum mechanical problems. The later studies by Petrashen and his students were concerned mostly with obtaining 
asymptotic representations for different kinds of regular and diffracted waves formed by a sphere (Petrashen 1950; Buldyrev & 
Molotkov 1958), such as head interference waves for the scalar case (Buldyrev & Molotkov 1960), failure waves for the scalar 
case (Buldyrev 1964), surface waves on an isolated elastic sphere (Gelchinskij 1958), and complete solutions for an elastic 
sphere (Korneev 1983; Korneev & Petrashen 1987). Related work includes the theoretical and experimental studies of acoustic 
waves incident upon an elastic sphere by Nigul et al. (1974). Independently, Truell and his coworkers (Ying & Truell 1956; 
Einspruch, Witterholt & Truell 1960; Truell, Elbaum & Chick 1969) also made important contributions to the solution of this 
problem. Extensions and applications of this general approach can also be found in Yamakawa (1962). The basic equations that 
are obtained when displacement potentials are used along with summaries of some of the work mentioned above can be found 
in such books as Morse & Feshbach (1953) and Pao & Mow (1973). 

The basic method followed in the above papers is to write the solutions inside and outside the inclusion in terms of 
appropriate eigenfunctions of the differential equations and then couple these solutions by matching the boundary conditions 
on the surface of the inclusion. It is also possible to formulate this problem as an integral equation by making use of the 
elastodynamic Green function for a homogeneous medium. Further information on this approach can be found in Miles (1960), 
Haddon & Cleary (1974), Varatharajulu & Pao (1976), Waterman (1976), Hudson (1977), Gubernatis, Domany & Krumhansl 
(1977a) and Gubernatis et al. (1977b). 

In this section we outline a method of obtaining the general solution for the scattering of a plane P wave by a spherical 
inclusion. Although a solution to this problem can be found in several of the papers listed in the previous paragraphs, we 
repeat it here for completeness and also to introduce a set of spherical basis vectors which are used in our solution but are not 
common in the English literature. These basis vectors were developed by Petrashen and have properties which are convenient 
for solving vector function problems with spherical symmetry. 

Consider the configuration shown in Fig. 1. Joint Cartesian {x, y ,  z }  and spherical {r ,  0, 4} coordinate systems will be used. 
Centred about the common origin of these coordinate systems is a sphere of radius r = R. The volume within this sphere will be 
denoted by the index v = 1, while the volume outside will be denoted by v = 2. The materials inside and outside the sphere will 
in general be different, and the properties of these materials are completely described by the Lame parameters and density 

h ,  =constant, p, = constant, p,, = constant, (Y = 1,2). (2.1 ) 

Incident from medium v = 2 is a harmonic disturbance with a displacement field given by 

6" = u,,(x, y ,  z)ejW'. (2.2) 

The interaction of this incident wave with the sphere gives rise to additional displacement fields both inside and outside the 
sphere, and these are denoted by 

6" = uV(x, y ,  z)eim', ( v  = I ,  2). (2-3) 

These additional disturbances will be referred to as the scattered fields. Associated with each field is a stress tensor. We will 
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v = 2  

Figure 1. The geometry of the problem. The sphere of radius R has material properties denoted by Y = 1, while the material properties of the 
surrounding medium are denoted by v = 2. A plane P wave is incident from along the negative z axis. The transmitted wave field is observed as 
a function of the x coordinate along a line that is offset a distance z from the centre of the sphere. 

only need the traction on spherical surfaces and this is given by 

(2.4) 
dU 
dr  

f:")(U,,) 1 A,V - U$ + 2 p V y +  p,[? X V X U,] 

where 3 = r/r is the unit radius vector. We also denote the velocities and slowness of both compressional and shear waves by 

The incident field of eq. (2.2) and the scattered fields of eq. (2.3) must all satisfy the elastodynamic equations of motion in 
mediums v = 1, 2,  

(A,, + 2pv)V2U, - p,V X V X U, + ~ , , U ~ U ,  = 0. (2.6) 

Taken together the fields must satisfy the boundary conditions on the surface of the sphere, which are that the displacement 
and traction should be continuous. Thus we require that 

U, = U, + U, and t!"[U,] = t?[U, + U,] (2.7) 

where all of these equations are evaluated at r = R. We also require that the scattered fields remain finite within the sphere and 
satisfy a radiation condition at large distances from the sphere 
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where k = w / V f )  or k = w/V?). This is a well-posed problem in that, given the incident wave, the boundary conditions are 
sufficient to solve for the scattered fields and thus arrive at  a unique solution to  the problem. 

Now let us consider the special case of an incident wave which is a plane harmonic P (compressional) wave propagating in 
the direction of the positive z axis. In this case we have 

uo = e-rwa2zi (2.9) 

where f is a unit vector in the z direction. We construct the solutions by introducing the system of spherical vectors developed 
by Petrashen (1945,1949) 

(2.10) 

This system, whose main features are  outlined in Appendix A,  leads to  particularly simple equations in this problem of 
spherical symmetry. Using the system of eq. (2.10), an arbitrary vector function U can be represented in the form 

u = C {+CrYm(r)Y:rn + + L ( r ) y L  + +iz(r)yinJ 
k O . l r n l S l  

where the lCllrn(r) are unspecified radial functions at  this point. 
The particular incident wave of eq. (2.9) has the representation 

(2.11) 

(2.12) 

where the j k ( x )  are spherical Bessel functions. The displacement fields of the scattered waves U, and U, from eq. (2.3) can also 
be represented in terms of a series of the spherical vectors of eq. (2.10). Making use of the structure of the series in eq. (2.12) 
for the incident wave and the orthogonal properties of the spherical vectors (see Appendix A), it is possible to show that U, 
and U2 can be expressed as 

u, = c I[ajl)jl+l(walr) + W % + 1 ( 4 3 1 ~ ) I Y l J  
l 2 0  

+ [-aj”j,-,(walr) + ( I  + l)b~”j,-,(w~lr)]Y~}exp{-i[~/2(I + l)]} (2.13) 

u, = c I[42’h/+,(wa2r) + ~ b ~ 2 ’ h , + , ( 4 2 r ) l Y ; ,  
l l - 0  

+ [-aj2’hl- ,(wa2r) + ( I  + l)b~2’h,~,(~~,r)]Y~,}exp{-i[~/2(I + l)]} (2.14) 

where a:‘” and bj”’ are now unknown scalars and the h k ( x )  are spherical Hankel functions of the second kind. Note that the 
spherical Bessel functions j k ( x )  of eq. (2.13) are finite throughout the inclusion and the spherical Hankel functions h k ( x )  of eq. 
(2.14) have asymptotic representations for a large argument that satisfy the condition in eq. (2.8). Also note that with the basis 
vectors being used here, the displacements in eqs (2.13) and (2.14) separate into compressional and shear fields, so that either 
equation can be put in the form 

u, = u: + u: (2.15) 

with the a:”)  associated with the P field UP, and the bj”) associated with the S field Uv,  and with the following conditions 
satisfied 

vxuP,=o,  v . u ; o .  (2.16) 

To determinate the coefficients a;”’ and bj”) in eqs (2.13) and (2.14) we have to  satisfy the boundary conditions of eq. 
(2.7). Making the necessary substitutions, evaluating the expressions for r = R, and using the orthogonal properties of the 
spherical vectors, one arrives at a separate set of linear equations for each value of 1. When I = 0 one can take advantage of the 
fact that Y(i = 0 to get the abbreviated set of equations 

(2.17) 
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where 

(2.18) 

y v = - ,  f f"  K = -  P I P 2  

PY P 2 P I '  

When 1 2  1 a full set of four equations with four unknowns is obtained of the form 

w/F, = F' 
where 4 and pl are the column matrices 

F, = [a: ' ) ,  b: ' ) ,  a:'), bj2)IT 

and 

= [j/+1(52L -;/-1(52), c;, G I '  
and the matrix W, is given by 

i/+ I ( [ ' )  b/+ l ( 7 7 1 )  -h+ '(62) -lh/+1(772) 
-il- 1(51) (1  + l l L l ( ~ l )  h,-1(52) - ( I  + l)h1-1(v2) 

K C ;  - K ( !  + 1)o; -cq (1 + 1)B, 

'=[ K C :  K I D :  -c; 4; 

The following notations are used here 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

It can be shown that the determinants of the matrices in eqs (2.18) and (2.23) are  always different from zero, so in 
principle it is always possible to  solve the systems of eqs (2.17) and (2.20) for the unknown coefficients aj"' and bj"' for any 1. 
However, because of the asymptotic properties of the matrix elements, numerical difficulties can be encountered when solving 
these systems of equations. This will be discussed in the next section. 

Finally, note that the coefficients a:"' and bj"' for any 1 are completely defined by the member of the series in eq. (2.12) for 
the incident wave with the same 1. That is, there is no coupling between harmonics associated with different values of 1. This 
means that a scattering problem for the sphere with an incident wave represented by any member of eq. (2.12) with index I 
could be considered, and the results would be the corresponding members of eqs (2.17) and (2.20) with the same index I. To 
illustrate this point we will show how the solution for an incident wave generated by a point pressure source can be obtained by 
a slight modification of the solution for the plane wave source developed above. Consider a point pressure source located at the 
point R,, = (Z , , ,  0,O) where Z0 > R. This will generate a displacement field U, of a spherical P wave 

u,, = -v = - g C  {i/+ l (kPr )y ; )  - i /- l(k,r)Y,o>hr(k,z").  (2.24) 

Each member of the series in eq. (2.24) differs from that in eq. (2.12) by the coefficient 

-dfplr-Rol 

Ir - ROI /a, 

/(kpZO). - -ik2edE/2<f+ 1'Ih 
/ -  P 

Thus the solution for the point pressure source is simply obtained by multiplying the members of eqs (2.13) and (2.14) by c,. 
The eqs (2.17) and (2.20) are unchanged. 
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3 NUMERICAL CONSIDERATIONS 

To calculate the scattered fields U, and U2 using the series in eqs (2.13) and (2.14) we have to solve the linear systems of eqs 
(2.17) and (2.20) for all I >  0. These systems of equations are generally solved by numerical methods, which means that the 
numerical stability of the calculations are a concern. The coefficients of the matrices W, in these systems include spherical 
Bessel and Hankel functions, whose features for 1 >> 1 are characterized by the formulae 

if z < < I ,  where 

y=-. 

Because of different ratios between 1 and the arguments 5,, 12, q ,  and q2 of the functions j r  and h, that appear in eq. (2.23), the 
orders of the different columns of this matrix can became quite different. In particular, for the case I + ~0 the coefficients in the 
two first columns go to zero while the other coefficients go to infinity. In such a situation numerical calculations on a computer 
can become unstable before achieving the necessary accuracy. 

a : ' )  = h / ( [ , ) x $ ' ) ,  

l + ;  
Z 

To avoid this situation, we redefine the unknown variables a!"), bj"' as new ones xj"), y!")with the formulae 

bj" = h/(q,)y(ll) 
aj2) = h- ' ([  )p b y ' =  h-1 (3.3) 

I 2 1 3  / (V2)YY. 
Now, if we let the unknown column matrix be 

x/ = [xj'), yjl), x y ,  yj"]" (3.4) 

m/x/ = F/ (3.5) 

the system of eq. (2.20) will be 

where the column matrix F/ is the same as in eq. (2.22), and m/ can be obtained from eq. (2.23) by multiplying its columns by 
h , ( ( , ) ,  h,(ql) ,  h;'(&),  h;'(v2),  respectively. Now the coefficients of the matrix m, have values of approximately the same 
order (they differ from each other no more than by a coefficient of order t )  and the numerical difficulty mentioned above is 
avoided. 

The change in variable given by eq. (3.3) is also helpful in solving another numerical problem, that of determining how 
much of the infinite series in eqs (2.13) and (2.14) must be retained in order to achieve a given accuracy. Note that the 
unknown coefficients now are of the same order as the members of FJ 

x;"' - yj"' - jSt2) (3.6a) 

and for 1 > t2 we obtain the estimate 

(3.6b) 

where 

(3.7) 
e52 

( ' -  2 
1 - - + N ,  (N>1)  

is taken to be sufficiently large ( lo  >> 1). Thus, the coefficients x:"' and yj") go to zero exponentially when 12 et2/2 + N and 
N -  =. Using the following relations obtained from eq. (3.3) 
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and the 'limited' character of the values 

it is clear that the series in eqs (2.13) and (2.14) converge at a rate that is equal to  or greater than the series in eq. (2.12). 
Therefore, if we take the first I ,  members of the series, with lo specified by eq. (3.7), the absolute error of the calculations will 
not be greater than a value of order FN.  When any of the arguments [,, 7, is no more than &, the error in the respective 
series decreases with increasing r as (r/R)lU in medium Y = 1 ( r  < R) and as (Rlr)'" in medium Y = 2 ( r  > R). Thus, given an 
error tolerance for the calculations of the fields Uv(rr O), we can estimate a number I, for any frequency w and sum the series in 
eqs (2.13) and (2.14) for 1 5  lo. Test calculations showed that N = 15 in eq. (3.7) is sufficient to  give an accuracy of lo-' or 
better. 

As mentioned at the beginning of this section, the system of eqs (2.20), or equivalently (3.5), are generally solved by 
numerical methods. However, analytical solutions of these systems are possible, although laborious, requiring the equivalent of 
inverting a matrix of rank four. This has been done and the results are given in Appendix B. Having two different solutions of 
the same basic equations is quite useful in checking the stability and accuracy of both solutions. Thus the analytical solutions of 
Appendix B were used to  check the solutions that were obtained by numerically solving eq. (3.5). This comparison showed that 
for I, given by eq. (3.7) with N = 15 the numerical solution of eq. (3.5) is stable and gives the same result as the analytical 
solutions. For N > 15 (accuracies better than lo-') the calculations revealed that the analytical solution gave more accurate 
results. It should be mentioned here that all of the calculations discussed in this paper were done with double precision 
arithmetic. 

There is another way of estimating the accuracy of the calculations without considering the properties of the coefficients a, 
and b,. This approach takes advantage of the observation made earlier that there is no coupling between harmonics associated 
with different values of 1. Thus one considers the expression for the incident wave in eq. (2.12) evaluated on the surface of the 
sphere ( r  = R) and truncates the series at a value of I that gives the desired accuracy in representing the incident wave. Then 
the a, and b, summed up to  this same value of 1 can be considered as either the exact solution to  the truncated version of the 
incident wave or  as the approximate solution to  the analytical version of the incident wave having the desired accuracy. 

4 SCATTERING CROSS-SECTIONS 

A useful method of characterizing scattering by an object is to  calculate the energy of the scattered waves and compare it to the 
energy of the incident wave. Various forms of this ratio between the scattered and incident energies are called scattering 
cross-sections. The energy of the scattered waves can be obtained by calculating the energy flux of scattered waves through a 
surface S that completely surrounds the object. Noting that the energy flux per unit time through a surface element ds having a 
normal n is given by (U * f,,[U]) and that the energy flux averaged over one period is w $it/ (U * t,*[U])/2, then the total energy 
flux per period through the surface S is given by 

where (*) means the complex conjugate. The  same reasoning applied t o  the incident P wave yields an energy flux per unit area 
of the wavefront of w2a,(A2 + 2p2)/2. 

Now we follow Truell et al. (1969) and define a normalized cross-section as the ratio of the flow of total energy carried 
outward by the scattered waves to  the rate of flow in the incident wave through a normal area equal to  the cross-sectional area 
of the object (geometric shadow of the object). In our case we let S be a spherical surface of radius r,) with ro> R and the 
normalized cross-section is given by 

ds I a, = 9ir1 
r = m  wa2(A2 + 2p,)zR2 

where @ can be calculated by using either of the formulae 

(4.2a) 

(4.2b) 

The second expression for @ is easily obtained from the fact that the scatterer generates no additional energy, which leads to 
the conditions which for both the incident wave U, and the total field U, + U, there is zero net energy flux across the surface S 
so long as it is entirely contained in medium Y = 2. 

Using eq. (2.4) for the traction vector, the series in eqs (2.12) and (2.14) for Uo and U, and orthogonal properties of the 
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spherical vectors, we can obtain two different expressions for o, 

or 

(4.3a) 

(4.3b) 

This result together with the earlier noted fact that the coefficients for different values of 1 are not coupled means that we must 
have 

laj2)12 + 1(1 + I)?: lbj2’12 = -Bzp a!’) (4.4) 

for any value of 1. This relationship is useful in verifying numerical calculations. 
The function a, from eq. (4.3) is closely connected with the value of the field U2(r, 0)  of scattered waves that is observed 

along the positive z axis for large r (r >> 2nVp/w). 
we obtain 

- e-iSz(r-iR) [ (;)I 
A,, 1 + 0  - - -z- 

r 

where 

R 
A,, = i - 2 (21 + 1 ) ~ ; ~ ) .  

Comparing eq. (4.5) with (4.3b) we have 

52  / a 1  

Using asymptotic expressions for the spherical Hankel functions in eq. (2.14) 

(4.5) 

which is analogous to an optical theorem for elastodynamics. This expression in eq. (4.6) is a useful relationship between the 
amplitude of the forward-scattered field and the total energy scattered in all directions by the obstacle. 

5 N U M E R I C A L  R E S U L T S  

One of the primary purposes of this investigation was to  gain an understanding of the features of waves scattered by a local 
spherical heterogeneity. This problem can be studied with approximate methods, such as ray theory, but it is not always clear if 
the information provided about amplitudes and waveforms is accurate. With the results presented earlier in this paper, it is 
possible to calculate these scattered waves with the assurance that the results are complete and accurate. Unfortunately, the 
results such as eqs (2.13) and (2.14) are not very revealing in the form of an analytical series and must first be converted to 
some graphical form, such as synthetic seismograms or scattering cross-sections, before the physical properties of the scattered 
waves become apparent. 

We are interested in knowing what types of waves are scattered by a sphere and particularly interested in understanding 
where the scattered waves with the largest amplitudes can be found in the region surrounding the sphere. It is possible to  argue 
that the main features of such waves that are scattered by a sphere will be approximately the same for a wide class of smoothly 
shaped 3-D heterogeneities, and this broadens the utility of the results presented in this paper for providing insight into realistic 
seismological problems. 

First consider the matter of what types of waves are scattered by the sphere and their relative amplitudes. These effects are 
best observed in the time domain, which requires that the frequency domain solutions obtained in this paper be transformed to 
the time domain. This was done by applying a numerical Fourier transform to the solutions and by assuming a broad-band 
pulse as the form of the input wave. This source pulse had constant amplitudes in the frequency band between 0.00 and 64.0 Hz 
with a sampling interval of 0.25 Hz, which means that the pulse contained wavelengths that ranged from more than one order 
of magnitude smaller than the radius of the sphere to more than an order of magnitude larger. Synthetic seismograms were 
calculated for the positions that are shown in Fig. 1, which lie on a line offset a distance z from the centre of the sphere in the 
direction of forward scattering and extending from the centre of the shadow into the fully illuminated zone. Because of the 
symmetry of the problem, there are only two non-zero components to the solutions, U, = U r ( x ,  0, z ,  t )  and Uz = U z ( x ,  0, I, t).  

The solutions presented in this paper can be calculated for arbitrary elastic properties inside and outside the sphere, 
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including the case of a fluid inside the sphere. Here we present results for two models, one representing a low-velocity scatterer 
and the other representing a high-velocity scatterer. The elastic parameters for these two models are as follows: 

model 1 V:) = 4.5 km s-’, 

Vf)  = 6.0 km sC1, 

V F )  = 7.5 km sC1, 

V f )  = 6.0 km s-’, 

V:” = 2.6 km sC1,  

V r )  = 3.5 km s-I, 

V!” = 4.4 km sC’, 

V!*’ = 3.5 km s-’ ,  

p ,  = 2.3 gm cmC3 

p2 = 2.7 gm cmC3 

p l  = 3.1 gm cm-’I 

p2 = 2.7 gm 

Note that there is only one physical dimension in this problem, the radius of the sphere R. Thus all of the other parameters in 
the problem can be scaled with respect to this parameter, which is given a value of unity in the results that follow. The 
velocities and frequencies scale with R in the sense that the results are invariant so long as the expressions of eq. (2.19) and the 
ratio r / R  remain constant. 

Synthetic seismograms are shown for three different values of the offset distance from the sphere z in Figs 2, 3, and 4. The 
results for the low-velocity scatterer (model 1) are shown in the upper parts of these figures and those for a high-velocity 
scatterer (model 2) are shown in the lower parts. In all of these figures a distance of 1 km along the x axis represents the edge 
of the geometrical shadow, since the value R = 1 km was used for the radius of the sphere. 

It is useful to associate geometrical ray paths with the primary features of the synthetic seismograms. Within the forward 
shadow there are three main types of scattered waves. These are (see Fig. 1): (1) a compressional refracted wave PzP,P2 that 
goes through the sphere. (2) A shear refracted wave that goes through the sphere as P,P,S, for a low-velocity sphere and as 

model 2 
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Figure 2. Transmitted wavefields as a function of distance x from the centre of the sphere along a line that has an offset distance z of 2 km from 
the centre of a sphere having a radius R = 1 km (see Fig. 1 for geometry). The panels on the left are for the z components of motion and the 
panels on the right are for the x components of motion. The top two panels are for model 1 of a low-velocity inclusion, and the bottom two 
panels are for model 2 of a high-velocity inclusion. The distance x = 1 corresponds to the edge of the geometrical shadow. 
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Figure 3. Similar to Fig. 2 except that the offset distance z is 4 km. 

P2S,S2 for a high-velocity sphere. (3) A compressional diffracted wave P2p,P, that goes around the surface of the sphere. The 
relative contributions of these different waves to the total seismogram depends upon the offset distance z from the centre of the 
sphere. 

For near-offset distances z = 2R (Fig. 2), the wave P2Pl P2 dominates the first arrivals within the shadow on the z 
component. For a low-velocity sphere (model 1) it has a reversed polarity and arrives after the wave diffracted around the 
outside of the sphere. Note that there is a strong focusing along the axis for the low-velocity sphere but not the high-velocity 
sphere. The diffracted wave P 2 ~ , P 2  has a smaller amplitude within the deep shadow at  this offset distance. This low-frequency 
wave loses amplitude exponentially along its ray path around the sphere and is delayed in time with respect to the undisturbed 
incident wave. The shear waves P,P,S2 (low-velocity case) and P2S1S2 (high-velocity case) are strong on the x component and 
have a compound wave structure, involving a caustic and two diffracted waves. The caustic is due to  the fact that the sphere is a 
low-velocity zone for both of these waves, and extending beyond this caustic are low-frequency diffracted waves that attenuate 
rapidly with distance. For the low-velocity sphere this diffraction from the caustic begins to  interfere with the P2F, P2 wave at 
this offset distance. Behind this caustic and its diffraction is the wave that has been refracted through the opposite side of the 
sphere and thus arrives a t  a later time. Along this branch of the wave there is a transition from a geometrical ray arrival to  a 
diffracted wave that continues on to  greater distances, although the point of this transition is not obvious on the seismograms. 
Note that, because of focusing effects and near-field terms that are important a t  this offset distance, these waves have significant 
amplitudes on the z component of motion near the centre of the shadow. In fact, at x = 0, we have the unusual situation of an S 
wave that appears only on the z component. 
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For medium offset distances z = 4R (Fig. 3), all three of the waves P,P,P2, P2p2P,, and P2S,S2 have comparable 
amplitudes. The waves P2P,P2 and P2~,P2 arrive closely in time and interfere with each other. The P,PlS2 and P2S1S2 waves are 
now separated in time from the other phases and their compound nature is clearly evident. 

For the larger offset distances z = 8R (Fig. 4), the wave P,p,P, is dominant on the z components, as the shadow is not 
nearly so deep as a t  the smaller offset distances. The wave P2PlP2 which has passed through the sphere is relatively small 
compared to the wave which has diffracted around it. O n  the x components the waves P,PlS2 and P2SIS2 are the dominant 
arrivals and still display their compound waveforms. It is worth commenting on the reason why the P2P,S, wave is the 
dominant shear wave arrival for the low-velocity case, while P2S1S2 is dominant for the high-velocity case. These are the S 
waves that see the smallest change in material properties upon both entering and leaving the sphere, and thus the amount of 
energy lost to reflection and also the amount of strong focusing is minimized. In contrast, the wave P2S1S2 for the low-velocity 
case encounters a large change in velocity upon entering the sphere, which leads to  more energy lost to  reflected waves and 
also causes focusing so strong that the focal point lies within the sphere. Likewise, the wave P2P,S2 for the high-velocity case 
encounters a large change in velocity upon leaving the sphere. 

It should be emphasized that, regardless of the distance from the scatterer, there is a significant amount of motion on the x 
component. Recall that the displacement on this component would be zero if the sphere were not present, so we see that 
scattering is an effective means of transferring motion from one component of motion to  an orthogonal component in the 
direction of forward propagation. A t  the larger offset distances and for both the low-velocity case and the high-velocity case, 
the shear waves are the dominant contributor to  the x-component seismograms. 

A slightly different presentation of some of the data from Figs 2 , 3  and 4 is shown in Fig. 5.  Here the seismograms for the z 
component at the centre of the shadow are shown as a function of the offset distance z .  They show quite clearly how the 
dominant wave type in the shadow changes from P,Pl P, at small z to  P2p2P2 at  large z for the cases of both the low-velocity 
inclusion and the high-velocity inclusion. Note that for the low-velocity inclusion the P,p',P2 wave is the first arrival, whereas 
for the high-velocity sphere it is the P2PlP2 wave that arrives first. This figure also illustrates how the low-velocity sphere is 
much effective in focusing energy into the shadow than is the high-velocity sphere. 

These results show that, depending upon the distance of the observation point from the scattering object, the dominant 
part of the seismic field in the shadow zone may be composed of waves having a fundamentally different nature. Moreover, in 
the case of low frequencies it may be difficult to separate these different waves from each other on the basis of traveltimes. It 
would appear that results of this type would be applicable to  various types of seismic tomographic methods. For instance, the 
results in Fig. 5 show quite clearly that a t  observation points distant from the inclusion more than a few times its dimension, the 
dominant wave has been diffracted around the obstacle rather than passing through it, which differs from the common 
assumption made in seismic transmission tomography. Because of this, the traveltime anomaly will decrease with distance from 
the inclusion. Obviously, when solving inverse problems to  obtain estimates of the properties of the scattering object, it is 
important to have a proper understanding of what types of waves are dominating the seismograms in order that the correct 
algorithms can be applied. 

So far we have considered only forward scattered waves and the results have been illustrated with broad-band time domain 
seismograms. To obtain a better understanding of how the scattered fields depend upon frequency and also to expand the 
spatial coverage to  include back-scattered waves, it is convenient to consider scattering diagrams. The field U, from eq. (2.14) 
can be represented in the form 

uz = [u,(~)F + [ u p ( e ) ~ e G  + [u,(e>l,i + [uS(e>le6. (5.1) 
Then, using eq. (2.14) and the definitions of the spherical vectors, we obtain the following expressions for the scattering 
diagrams for the P and S fields 

where we have assumed that the parameters 

or or 
v=V(rz, , $ -  

"f ' ' 
are evaluated for any r > R. 

(5.3) 
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Figure 6(a). Scattering diagrams for various values of the parameter k,R = wR/V,. In each panel the left-hand figure represents the scattered 
P field, while the right-hand figure represents the scattered S field. The top two panels are for the case k,,R = 0.5 and the bottom two panels are 
for the case k,R = 1.0. The two panels on the left are for model 1 of a low-velocity inclusion, and the two panels on the right are for model 2 of 
a high-velocity inclusion. 

Scattering diagrams for six different ratios of RIA that range from less than 0.1 to greater than 3.0 and for both models are 
shown in Fig. 6, where the radius of the observation point r is taken large enough that near-field terms are small and the 
scattered P and S waves have their natural polarizations. A number of interesting results emerge from the study of these 
figures. First, at low frequencies more of the incident P field is converted to scattered S fields than to scattered P fields, while at 
high frequencies just the opposite occurs. Second, at low frequencies the portions of the incident field which are forward 
scattered and back scattered are comparable, whereas at high frequencies most of the scattered field lies in the forward 
direction. At the highest frequencies we approach the case of only generating a forward-scattered P field. Third, in terms of the 
shapes and amplitudes of the scattering diagrams, there are only minor differences between the case of the low-velocity 
inclusion and that of the high-velocity inclusion. This is consistent with the results shown in Figs 2-5, where the differences 
between the low- and high-velocity case are most pronounced at small distances from the inclusion and tend to diminish at 
larger distances. Obviously, the near-field parts of the solution are more sensitive to the sign of the velocity anomaly of the 
inclusion than are the far field parts. 

Finally, to obtain even more detailed information about the frequency dependence of the scattered fields, it is instructive 
to consider the scattering cross-sections defined in Section 4. These scattering cross-sections are plotted for both the 
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Figure 6(b). Similar to Fig. 6(a) except that the cases are for k,,R = 2 in the top two panels and for kPR = 4 in the bottom two panels. 

low-velocity inclusion and the high-velocity inclusion in Fig. 7. An interesting result shown here is that at low frequencies 
(k ,R < 2) more energy is scattered into the S field than into the P field, with the ratio reaching a factor of 2 or more in some 
ranges. At  high frequencies (k,R greater than about 5 ) ,  the scattered energy flux is primarily in the P field. In this range the 
long large-amplitude oscillations are caused by interference between P, P, P, and P,p,P, waves. The short small-amplitude 
oscillations that appear only for the case of the low-velocity sphere are caused by the focusing characteristic of a low-velocity 
inhomogeneity, essentially the waves multiply reflected within the sphere that are  evident in Fig. 5. 

In both the scattering diagrams of Fig. 6 and the scattering cross-sections of Fig. 7, the amplitudes of the scattered fields 
have been displayed, but information about their phases are not shown. It is important to  remember that outside the sphere the 
total solution consists of the sum of the incident field U, and the scattered field U,, and these two fields c a n a d d  either 
constructively or destructively. From a physical viewpoint it is clear that when the primary field U, interacts with the inclusion, 
it loses that part of its energy which is converted to scattered waves and this causes a change in the primary field. Thus, the 
additional field U, must include both this change in the primary field as well as the secondary scattered waves. For instance, in 
the deep shadow where the total field is approximately zero, the field U, must have a value that is close to  -U, in order to  
compensate for the primary field. Consequently, in the scattering diagrams of Fig. 6 the forward scattered P field approaches a 
value of 1 at  high frequencies, but this is partly present in order to  cancel the primary wave. In the case of the scattering cross 
sections of Fig. 7 this same phenomenon causes the scattered P field to  approach an asymptotic value of approximately 2 at 
high frequencies. This follows from the fact that in this frequency range the scattered field consists of two basic terms, the 
energy necessary to  cancel the primary field in the shadow and the energy which is scattered by the sphere, and by 
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Figure 6(c). Similar to Fig. 6(a) except that the cases are for k,,R = 10 in the top two panels and for kPR = 20 in the bottom two panels. 

conservation of energy these two terms must be equal to each other and equal to the incident energy which is used to normalize 
the cross-sections. It helps in understanding this phenomenon to consider the case of a perfectly absorbing sphere, in which 
case there will not be any waves that are actually scattered, but the normalized scattering cross-sections will still have a value of 
1. 

6 CONCLUSIONS 
The results presented in this paper can be used in a number of different ways. First, the complete and exact solution for the 
scattering of an elastic P wave by a spherical inclusion is presented in a convenient form. The various terms of the solution can 
be obtained either from the analytical solutions or a stable numerical procedure. Furthermore, a simple expression is developed 
for estimating the number of terms required in the harmonic series solution. The results are appropriate for arbitrary 
non-absorbing spherical inclusions, including fluids, and for all frequencies. 

The numerical results calculated for the waves scattered from a spherical inclusion display a rich variety of interesting 
phenomena, some of which were briefly investigated in this study. In addition to the wavelength of the incident wave, the 
results depend critically upon the distance of the observation point from the scattering object. Within the shadow zone the 
waves which dominate the solution near the scatterer are quite different from those that dominate at larger distances. The 
solutions for low-velocity inclusions are quite different from those for high-velocity inclusions when near the scatterer, but 
these differences diminish at larger distances. Also, the solutions demonstrate that an inclusion can be quite effective in 
transforming incident P waves to scattered S waves, which may be important in the formation of seismic codas. 
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The results presented in this paper should also be applicable, in at least an approximate manner, for problems involving 
scattering from heterogeneities more complicated than a simple sphere. Scattering by a sphere serves as a canonical problem 
for a general class of objects with relatively simple and smooth boundaries. It is expected that many of the scattering 
phenomena associated with the spherical inclusion will also apply to this wider class of heterogeneities. 

Finally, as mentioned in the introduction, the results of this study can serve as the starting point for an investigation of 
various approximations that are typically made in the interpretation of scattered seismic waves. In assessing the validity of 
these approximations it is important to make comparisons with the exact solutions. 
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A P P E N D I X  A .  SPHERICAL VECTOR SYSTEM 

The spherical vector system used in this paper and its application to the problems of elastodynamics were developed by G. I. 
Petrashen. His original papers were published many years ago in Russian and are not readily available today. Thus we have 
included a brief summary of the system and its main properties in this appendix. More information can be found in Petrashen 
(1945,1949) and Korneev & Petrashen (1987). 

In a spherical coordinate system {r, 8, 4} with unit vectors (?, 5, 4) the spherical vectors are defined by the expressions 
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with the usual spherical harmonics 

qm(e, 4 )  = e'"+P;"(cos e), - I  I m 5 1 

where P;"(x) are the associated Legendre functions 

1 2  0, 

In a spherical coordinate system these vectors have the components 

In a Cartesian coordinate system the components are 

The spherical vectors of the system in eq. (Al)  are linearly independent at any point (0, 4 )  on a spherical surface. In the 
space of vector functions f ( O , & )  defined on a sphere R 

0 s  8 5 n, 0 5  4 52n,  dR = sin e d e d 4  

the vectors satisfy the following orthogonality relation 

where the normalizing coefficients are given by the expressions 

21 + 1 ( I  - m ) !  

4nl(l+ 1) ( I  + m ) !  

+J-.- 1 ( I  - m ) !  

4a(f + 1)  ( I  + m ) !  

1 ( I  - m ) !  

4 6  ( I  + m ) !  
c,; = J-. ~ 

For vector functions f(0, 4 )  with a finite norm 

R2 dR = P a  f dQ < x 
R 

the system of spherical vectors in eq. (Al) is complete in the sense of convergence in the mean for a generalized Fourier series 
expansion of f(e, 4)  
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where 

uj:) = ,cj;),2/ Y$,) - f d a .  ('47) 
n 

If the class of functions f(8, 4 )  possesses continuous first derivatives with respect to 8 and 4 on the sphere Q, then the series in 
eq. (A6) convergences uniformly and also possesses first derivatives with respect to 8 and 4 that agree with those of the 
original function. 

The main feature of the spherical vectors of eq. (Al) is contained in their complete utilization of central symmetry when 
acted upon by any differential operator that is invariant to rotation. Consider an arbitrary differential operator L(r,  8, 4) which 
is invariant to rotation of the spherical coordinate system (r,  8, 4).  By invariant to rotation we mean that the operator L 
commutes with any other operator R that represents a rotation in 3-D space. Then, for an arbitrary function +(r) ,  possessing 
sufficient derivatives, we have the equality 

~ ( r ,  8,4)[+(r)yj;)(e, 4)1 = [~j;)+(r)lyl;)(@~ 41, Y = (0, +, -1 ('48) 

where Mj;)(r) is an operator that acts 3n the radial function + ( r )  only. This property together with the orthogonality relation 
in eq. (A4) means that for a differential equation of the form 

L(r,  8, 4 ) U  = 0 

substituting an expansion of the form 

u = c +!;Yr)Y;;)(e 4) 
vJ,m 

converts the original system into a set of independent equations 

M;;)+j;)(r) = 0 

that only involve the radial functions +j;)(r). 
In many practical applications, it is necessary to know how the vector 

u, = +L(r)YYrn + +L(r)YL + $L ( r )YL  

responds to the following differential operators: 

Finally we note that in the case of boundary conditions with cylindrical symmetry, it is convenient to use a cylindrical 
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vector system 

Y: = Ym2 

Y: = y r n ~  - iY,$ (‘414) 
A 

Y, = YmP + iYm+ - 
where Y, = eim” and (5, + , 2 )  are unit vectors of a cylindrical coordinate system (p,  4, z ) .  For the case of cylindrical symmetry 
the vector system of eq. (A14) possesses the main features of the system of spherical vectors of eq. (Al). 

APPENDIX B 

The analytical solutions for the unknown coefficients in eq. (2.20) are 

where 

The following relation exists between the terms in eqs (B3)-(B5). 

A?) = i 4 m  ( A t )  A:)*). 

An expression for A:) can be derived from eq. (B2) by substituting for functions hk(&) ( k  = / - 1, I ,  / + 1 )  the corresponding 
functions - j k ( t2 ) .  The following quantities were used in eqs (B2)-(B5) 

772 

For the case of a fluid within the sphere, the above equations can still be used provided the following substitutions are 
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An expression for A?) can be derived from the one for A in the same way as for the elastic case. 




